For historical reasons, several numeric bases is used in Taruven, namely binary, base 5, base 8 (octal) and base 24.
Few know or care about the binary system, which is mostly included here for completeness, though patterns of zeros and ones have a sort of pronounced shorthand that is used to describe binary patterns of all sorts, like for instance a chessboard. In the summary, this is the column for "colloquial binary".
Prior to the first grammar of Taruven, there were two competing systems in use; base 5 for everyday matters and base 24 for everything else. The empire later settled on base 8 for everyday matters, with a base 5 monetary system, and base 24 for science and engineering. In xāria, where as usual the Houses of course cannot use the same thing as the empire or a rival House, several different bases are in use for everyday matters, among them base 12 and 16.
aìle 0 þa 1
Base 2 | Pattern | Base 10 | Name |
---|---|---|---|
24 (nibble) | 1000 | 16 | thallen |
01010101 | 85 | hatalen | |
10101010 | 170 | taladen | |
28 (byte) | 100000000 | 256 | areì |
0: aìl
01: aìda
10: þaìl
11: þada
00: halaì
01: haìda
000: halelaì
001: halata
010: hatalaì
011: hatade
100: þalaìle
101: þaìleda
110: þadaìle
111: þatada
These days, base 5 is used as the base for some forms of computing instead of binary, and for the lower denominations of the old monetary system. These days, the highest number possible in base 5 is 1562410, that is 444445: kaìr-šīra kaìr-kanta kaìr-vynta kaìr-arta kaìr-kaìr.
Unique for base 5: nnta 5. nnta is used instead of the word for zero in compound numbers of base 5: 1010 (2×5) is ran-nnta and not *ran-aìren.
Octal adds šu for 5, gaò for 6, di for 7 and hreì for 8. As with nnta for base 5, hreì is used for zero in compound octal numbers: 3210 (4×8) is kaìr-hreì and not kaìr-aìren
The word for 16, thallen, is from the binary pattern 10002. The word for 24, jaryan, is likewise from the base 24 system. In some dialects, nnta from the base 5 system is used for 5 instead of šu.
Base 24 adds hūš 9, myn 10, vru 11, allin 12, adren 13, arran 14, avryn 15, thallen 16, agrun 17, aỳra 18, ašora 19, ařan 20, avalle 21, atira 22, amara 23 and jaryan 24. While nnta and hreì is used for compound numbers like n×5 in base 5 and n×8 in octal respectively, jaryan is only used when the compound number is between 24 and 47, inclusive. If not, the much shorter yar is used instead: jaryan hreì 3210 (24+8), but ran-yar hreì 5610 (2×24+8). Furthermore, instead of *šu-yar the word šyar is used.
Binary | Colloquial Binary[*] | Base 5 | Base 8 | Base 24 | ||
---|---|---|---|---|---|---|
0 | aìle | aìle | aìren | aìren | aìren | |
1 | þa | þa | þa | þa | þa | |
2 | 21 | þa-aìle | þaìl(e) | ran | ran | ran |
3 | þa-þa | þada | hvenn | hvenn | hvenn | |
4 | þa-aìle-aìle | þalaìl(e) | kaìr | kaìr | kaìr | |
5 | 51 | þa-aìle-þa | þaìleda | nnta | šu | šu |
6 | þa-þa-aìle | þadaìl(e) | þa-þa | gaò | gaò | |
7 | þa-þa-þa | þatada | þa-ran | di | di | |
8 | 81 | þa-aìle-aìle-aìle | þalaìle-aìle | þa-hvenn | hreì | hreì |
9 | þa-aìle-aìle-þa | þalaìle-þa | þa-kaìr | hreì-þa | hùš | |
10 | þa-aìle-þa-aìle | þaìleda-aìle | ran-nnta | hreì-ran | myn | |
11 | þa-aìle-þa-þa | þaìleda-þa | ran-þa | hreì-hvenn | vru | |
12 | þa-þa-aìle-aìle | þadaìle-aìle | ran-ran | hreì-kaìr | allin | |
13 | þa-þa-aìle-þa | þadaìle-þa | ran-hvenn | hreì-šu | adren | |
14 | þa-þa-þa-aìle | þatada-aìle | ran-kaìr | hreì-gaò | arran | |
15 | þa-þa-þa-þa | þadata-þa | hvenn-nnta | hreì-di | avryn | |
16 | 24, 2×8 | … | thallen | hvenn-þa | thallen | thallen |
17 | … | þalaìle-haìda | hvenn-ran | thallen-þa | agrun | |
18 | … | þalaìle-þaìle | hvenn-hvenn | thallen-ran | aỳra | |
19 | … | þalaìle-þada | hvenn-kaìr | thallen-hvenn | ašora | |
20 | … | þaìleda-halaì | kaìr-nnta | thallen-kaìr | ařan | |
21 | … | þaìleda-haìda | kaìr-þa | thallen-šu | avalle | |
22 | … | þaìleda-þaìle | kaìr-ran | thallen-gaò | atira | |
23 | … | þaìleda-þada | kaìr-hvenn | thallen-di | amara | |
24 | 241, 3×8 | … | þadaìle-halaì | kaìr-kaìr | jaryan | jaryan |
25 | 52 | … | þadaìle-haìda | arta | jaryan þa | jaryan þa |
32 | 4×8 | … | þalaìle-halelaì | arta þa-ran | kaìrre | jaryan hreì |
40 | 5×8 | … | … | arta hvenn-nnta | šurre | jaryan thallen |
48 | 6×8 | … | … | arta kaìr-hvenn | gerre | ran-yar |
56 | 7×8 | … | … | ran-arta þa-þa | dirre | ran-yar hreì |
64 | 82 | … | … | ran-arta ran-kaìr | harran | ran-yar thallen |
72 | … | … | ran-arta kaìr-ran | harran-hreì | hvenn-yar | |
96 | … | … | hvenn-arta kaìr-þa | harran-jaryan | kaìr-yar | |
120 | 5×24 | … | … | kaìr-arta kaìr-nnta | harran-dirre | šyar |
125 | 53 | … | … | vynta | harran dirre šu | šyar šu |
144 | 6×24 | … | … | vynta hvenn-kaìr | ran-harran thallen | gaò-yar |
256 | 28 | … | areì | ran-vynta þa-þa | areì, kaìr-harran | myn-yar thallen |
512 | 83 | … | … | kaìr-vynta ran-ran | virran | avalle-yar hreì |
576 | 242 | … | … | kaìr-vynta hvenn-arta þa | virran-harran, virarran, utarha | utarha |
600 | 24×25 | … | … | kaìr-vynta kaìr-arta | virran harran jaryan | utarha jaryan |
625 | 54 | … | … | kanta | virran harran gerre þa | utarha ran-yar þa |
3125 | 55 | … | … | šīra | gaò-virran harran-šu | šu-utarha myn-yar šu |
4096 | 84 | … | … | šīra kanta ran-vynta hvenn-arta kaìr-þa | keryan | di-utarha ran-yar thallen |
13824 | 243 | … | … | kaìr-šīra ran-vynta hvenn-arta kaìr-kaìr | … | veraìn |
15624 | 56- 1 | … | … | kaìr-šīra kaìr-kanta kaìr-vynta kaìr-arta kaìr-kaìr | … | veraìn hvenn-utarha hvenn-yar |
65536 | 216 | … | … | - | … | kaìr-veraìn agrun-utarha ařan-yar thallen |
331776 | 244 | … | … | - | … | keìrye |
7.96×106 | 245 | … | … | - | … | šinn |
1.68×107 | 224, 88 | … | … | - | raỳan | ran-šinn ran-keìrye adren-veraìn avryn-utarha ran-yar thallen |
1.91×108 | 246 | … | … | - | … | gevan |
4.51×109 | 247 | … | … | - | … | džaìn |
6.87×1010 | 812 | … | … | - | leìan | … |
1.10×1011 | 247 | … | … | - | … | rahan |
2.81×1014 | 248, 816 | … | … | - | thuìlan | … |
7.92×1028 | 296, 832 | … | rišarga | - | rišarga | … |
1.33×1033 | 2424 | … | - | - | - | jarramān |
Number + =ax
kaìrax
kaìr -ax
4 -th
4th
In other languages, these are adverbs or adverbial expressions that tell how many times something is/was done. In Taruven this is done by a verbal suffix created by the ordinal prefixed with o-, as in example 1a) below.
tšahohvenn
tšah o- hvenn
see times 3
I looked thrice
tšahonn
tšah -onn
see many.times
I looked many times
-onn | many times |
---|---|
-oje | few times |
-oál | no times |
Fractions are constructed by prefixing vÿ(l)- to the denominator:
kaìr vÿdi
kaìr vÿl- di
4 FRC 6
four sixths
hvenn vÿlařan
hvenn vÿl- aỳra
3 FRC 18
three eigthteenths
vÿmyn
vÿl- myn
FRC 10
one tenth
hvenn vÿrišarga
hvenn vÿ- rišarga
3 FRC 7.92×1028
three 7.92×10-28s
1/2 | half | ku |
1/4 | quarter | haku |
1/5 | fifth | nin |
1/8 | eighth | irri |
1/24 | jeì |
jeì is also used for miniscule, smidgen.
hvenn a vÿdi 3 + 1/7
Multiples are constructed by prefixing ō(g)-:
ōran
ōg- ran
MUL 2
double, two times
ōgařan
ōg- ařan
MUL 20
twenty times
It is quite likely that the multiplicative ōg- and the adverbial -o- derive from the same source.
Distributive numbers are constructed by prefixing pe-, which simplifies to p in front of numbers starting with a:
peran
pe- ran
DIST 2
two each, by twos, two at a time
pallin
pe- allin
DIST 12
twelve each, by twelves, twelve at a time
The distributive number prefix can be stacked with the fractional prefix.
pevÿran
pe- vÿ ran
DIST FRC 2
a half of each, by halves
Negative numbers are constructed by prefixing aì-:
aìran
aì- ran
NEG 2
lacking two, minus two, two below zero
aìaỳra
aì- aỳra
NEG 18
lacking eighteen, minus eighteen, eighteen below zero
Symbol | Decimal | Name |
---|---|---|
i | √-1 | skāh |
φ | 1.61833… ((1+√5)/2) | šira |
e | 2.71828… | bān |
2π | 2×3.1415… | dyan |
x yhux = xy
nnta ranhux
nnta ran -hux
5 2 …
552, 2510
nnta ranhux þa
nnta ran -hux þa
5 2 … 1
552 + 1, 2610
nnta te ran
nnta te ran
5 + 2
55 + 2, 710
nnta ōran
nnta ō ran
5 × 2
55 × 2, 1010
šu vÿdi
šu vÿ- di
5 ÷ 6
58 ÷ 68, 510/610
There's both a system of logic based similar to the western logic (binary, true-false) and one with five values. The former is well described elsewhere, and due to space-considerations the latter is left as an excercise to the reader :)