numbers, counting and math

  1. Cardinal numbers (One, two, three…)
  2. Ordinal numbers (First, second, third, fourth…)
  3. Adverbial numbers (Once, twice, thrice, four times…)
  4. Fractional numbers (1/2, 1/3, 5/7…)
  5. Multiplitive numbers (Double, triple, quadruple…)
  6. Distributive numbers (Two for each, three for each…)
  7. Negative numbers (-1, - 234234…)
  8. Special numbers (π, e, i…)
  9. Basic math
  10. Logic

Cardinal numbers (One, two, three…)

For historical reasons, several numeric bases is used in Taruven, namely binary, base 5, base 8 (octal) and base 24.

Few know or care about the binary system, which is mostly included here for completeness, though patterns of zeros and ones have a sort of pronounced shorthand that is used to describe binary patterns of all sorts, like for instance a chessboard. In the summary, this is the column for "colloquial binary".

Prior to the first grammar of Taruven, there were two competing systems in use; base 5 for everyday matters and base 24 for everything else. The empire later settled on base 8 for everyday matters, with a base 5 monetary system, and base 24 for science and engineering. In xāria, where as usual the Houses of course cannot use the same thing as the empire or a rival House, several different bases are in use for everyday matters, among them base 12 and 16.

Binary

aìle 0 þa 1

Base 2PatternBase 10Name
24 (nibble) 1000 16 thallen
01010101 85 hatalen
10101010 170 taladen
28 (byte) 100000000 256 areì

Names of patterns of zeros and ones

0: aìl
01: aìda
10: þaìl
11: þada
00: halaì
01: haìda
000: halelaì
001: halata
010: hatalaì
011: hatade
100: þalaìle
101: þaìleda
110: þadaìle
111: þatada

Base 5

These days, base 5 is used as the base for some forms of computing instead of binary, and for the lower denominations of the old monetary system. These days, the highest number possible in base 5 is 1562410, that is 444445: kaìr-šīra kaìr-kanta kaìr-vynta kaìr-arta kaìr-kaìr.

Unique for base 5: nnta 5. nnta is used instead of the word for zero in compound numbers of base 5: 1010 (2×5) is ran-nnta and not *ran-aìren.

0
aìren, aìle
1
þa
2
ran
3
hvenn
4
kaìr
51
nnta
52
arta
53
vynta
54
kanta?
55
šīra

Octal

Octal adds šu for 5, gaò for 6, di for 7 and hreì for 8. As with nnta for base 5, hreì is used for zero in compound octal numbers: 3210 (4×8) is kaìr-hreì and not kaìr-aìren

0
aìren, aìle
1
þa
2
ran
3
hvenn
4
kaìr
5
šu
6
gaò
7
di
81
hreì
2×81
thallen
3×81
jaryan
4×81
kaìrre
5×81
šurre
6×81
gerre
7×81
dirre
82
harran
84
keryan
88
raỳan
812
leìan
816
thuìlan
832
rišarga

The word for 16, thallen, is from the binary pattern 10002. The word for 24, jaryan, is likewise from the base 24 system. In some dialects, nnta from the base 5 system is used for 5 instead of šu.

Base 24

Base 24 adds hūš 9, myn 10, vru 11, allin 12, adren 13, arran 14, avryn 15, thallen 16, agrun 17, aỳra 18, ašora 19, ařan 20, avalle 21, atira 22, amara 23 and jaryan 24. While nnta and hreì is used for compound numbers like n×5 in base 5 and n×8 in octal respectively, jaryan is only used when the compound number is between 24 and 47, inclusive. If not, the much shorter yar is used instead: jaryan hreì 3210 (24+8), but ran-yar hreì 5610 (2×24+8). Furthermore, instead of *šu-yar the word šyar is used.

0
aìren, aìle
1
þa
2
ran
3
hvenn
4
kaìr
5
šu
6
gaò
7
di
8
hreì
9
hūš
10
myn
11
vru
12
allin
13
adren
14
arran
15
avryn
16
thallen
17
agrun
18
aỳra
19
ašora
20
ařan
21
avalle
22
atira
23
amara
241
jaryan
5×241
šyar
242
utarha
243
veraìn
244
keìrye
245
šinn
246
gevan
247
džaìn
248
rahan
2424
jarramān

Summary

Binary Colloquial Binary[*] Base 5 Base 8 Base 24
0 aìle aìle aìren aìren aìren
1 þa þa þa þa þa
2 21 þa-aìle þaìl(e) ran ran ran
3 þa-þa þada hvenn hvenn hvenn
4 þa-aìle-aìle þalaìl(e) kaìr kaìr kaìr
5 51 þa-aìle-þa þaìleda nnta šu šu
6 þa-þa-aìle þadaìl(e) þa-þa gaò gaò
7 þa-þa-þa þatada þa-ran di di
8 81 þa-aìle-aìle-aìle þalaìle-aìle þa-hvenn hreì hreì
9 þa-aìle-aìle-þa þalaìle-þa þa-kaìr hreì-þa hùš
10 þa-aìle-þa-aìle þaìleda-aìle ran-nnta hreì-ran myn
11 þa-aìle-þa-þa þaìleda-þa ran-þa hreì-hvenn vru
12 þa-þa-aìle-aìle þadaìle-aìle ran-ran hreì-kaìr allin
13 þa-þa-aìle-þa þadaìle-þa ran-hvenn hreì-šu adren
14 þa-þa-þa-aìle þatada-aìle ran-kaìr hreì-gaò arran
15 þa-þa-þa-þa þadata-þa hvenn-nnta hreì-di avryn
16 24, 2×8 thallen hvenn-þa thallen thallen
17 þalaìle-haìda hvenn-ran thallen-þa agrun
18 þalaìle-þaìle hvenn-hvenn thallen-ran aỳra
19 þalaìle-þada hvenn-kaìr thallen-hvenn ašora
20 þaìleda-halaì kaìr-nnta thallen-kaìr ařan
21 þaìleda-haìda kaìr-þa thallen-šu avalle
22 þaìleda-þaìle kaìr-ran thallen-gaò atira
23 þaìleda-þada kaìr-hvenn thallen-di amara
24 241, 3×8 þadaìle-halaì kaìr-kaìr jaryan jaryan
25 52 þadaìle-haìda arta jaryan þa jaryan þa
32 4×8 þalaìle-halelaì arta þa-ran kaìrre jaryan hreì
40 5×8 arta hvenn-nnta šurre jaryan thallen
48 6×8 arta kaìr-hvenn gerre ran-yar
56 7×8 ran-arta þa-þa dirre ran-yar hreì
64 82 ran-arta ran-kaìr harran ran-yar thallen
72 ran-arta kaìr-ran harran-hreì hvenn-yar
96 hvenn-arta kaìr-þa harran-jaryan kaìr-yar
120 5×24 kaìr-arta kaìr-nnta harran-dirre šyar
125 53 vynta harran dirre šu šyar šu
144 6×24 vynta hvenn-kaìr ran-harran thallen gaò-yar
256 28 areì ran-vynta þa-þa areì, kaìr-harran myn-yar thallen
512 83 kaìr-vynta ran-ran virran avalle-yar hreì
576 242 kaìr-vynta hvenn-arta þa virran-harran, virarran, utarha utarha
600 24×25 kaìr-vynta kaìr-arta virran harran jaryan utarha jaryan
625 54 kanta virran harran gerre þa utarha ran-yar þa
3125 55 šīra gaò-virran harran-šu šu-utarha myn-yar šu
4096 84 šīra kanta ran-vynta hvenn-arta kaìr-þa keryan di-utarha ran-yar thallen
13824 243 kaìr-šīra ran-vynta hvenn-arta kaìr-kaìr veraìn
15624 56- 1 kaìr-šīra kaìr-kanta kaìr-vynta kaìr-arta kaìr-kaìr veraìn hvenn-utarha hvenn-yar
65536 216 - kaìr-veraìn agrun-utarha ařan-yar thallen
331776 244 - keìrye
7.96×106 245 - šinn
1.68×107 224, 88 - raỳan ran-šinn ran-keìrye adren-veraìn avryn-utarha ran-yar thallen
1.91×108 246 - gevan
4.51×109 247 - džaìn
6.87×1010 812 - leìan
1.10×1011 247 - rahan
2.81×1014 248, 816 - thuìlan
7.92×1028 296, 832 rišarga - rišarga
1.33×1033 2424 - - - jarramān

Ordinal numbers (First, second, third, fourth…)

Number + =ax

  1. kaìrax
    kaìrax
    kaìr -ax
    4    -th
    
    4th

Adverbial numbers (Once, twice, thrice, four times…)

In other languages, these are adverbs or adverbial expressions that tell how many times something is/was done. In Taruven this is done by a verbal suffix created by the ordinal prefixed with o-, as in example 1a) below.

    1. tšahohvenn
      tšahohvenn
      tšah o-    hvenn
      see  times 3
      
      I looked thrice
    2. tšahonn
      tšahonn
      tšah -onn
      see  many.times
      
      I looked many times
-onn many times
-oje few times
-oál no times

Fractional numbers (1/2, 1/3, 5/7…)

Fractions are constructed by prefixing vÿ(l)- to the denominator:

    1. kaìr vÿdi
      kaìr vÿdi
      kaìr vÿl- di
      4    FRC  6
      
      four sixths
    2. hvenn vÿlařan
      hvenn vÿlařan
      hvenn vÿl- aỳra
      3     FRC  18
      
      three eigthteenths
    3. vÿmyn
      vÿmyn
      vÿl- myn
      FRC  10
      
      one tenth
    4. hvenn vÿrišarga
      hvenn vÿrišarga
      hvenn vÿ- rišarga
      3     FRC 7.92×1028
      
      three 7.92×10-28s

Named fractional numbers

1/2halfku
1/4quarterhaku
1/5fifthnin
1/8eighthirri
1/24jeì

jeì is also used for miniscule, smidgen.

Mixed fractions

hvenn a vÿdi 3 + 1/7

Multiplitive numbers (Double, triple, quadruple…)

Multiples are constructed by prefixing ō(g)-:

    1. ōran
      ōran
      ōg- ran
      MUL 2
      
      double, two times
    2. ōgařan
      ōgařan
      ōg- ařan
      MUL 20
      
      twenty times

It is quite likely that the multiplicative ōg- and the adverbial -o- derive from the same source.

Distributive numbers (Two for each, three for each…)

Distributive numbers are constructed by prefixing pe-, which simplifies to p in front of numbers starting with a:

    1. peran
      peran
      pe- ran
      DIST 2
      
      two each, by twos, two at a time
    2. pallin
      pallin
      pe- allin
      DIST 12
      
      twelve each, by twelves, twelve at a time

The distributive number prefix can be stacked with the fractional prefix.

  1. pevÿran
    pevÿran
    pe-  vÿ  ran
    DIST FRC 2
    
    a half of each, by halves

Negative numbers (-1, -234234…)

Negative numbers are constructed by prefixing aì-:

    1. ran
      aìran
      aì- ran
      NEG 2
      
      lacking two, minus two, two below zero
    2. aỳra
      aìaỳra
      aì- aỳra
      NEG 18
      
      lacking eighteen, minus eighteen, eighteen below zero

Special numbers (π, e, i…)

SymbolDecimalName
i√-1skāh
φ1.61833… ((1+√5)/2)šira
e2.71828…bān
2×3.1415…dyan

Basic math

x yhux = xy

    1. nnta ranhux
      nnta ranhux
      nnta ran -hux
      5    2    …
      
      552, 2510
    2. nnta ranhux þa
      nnta ranhux   þa
      nnta ran -hux þa
      5    2    …  1
      
      552 + 1, 2610
    3. nnta te ran
      nnta te ran
      nnta te ran
      5    +  2
      
      55 + 2, 710
    4. nnta ōran
      nnta ōran
      nnta ō ran
      5    × 2
      
      55 × 2, 1010
    5. šu vÿdi
      šu vÿdi
      šu vÿ- di
      5  ÷  6
      
      58 ÷ 68, 510/610

Logic

There's both a system of logic based similar to the western logic (binary, true-false) and one with five values. The former is well described elsewhere, and due to space-considerations the latter is left as an excercise to the reader :)